武汉理工大学汽车工程学院教授、博士生导师,先进燃烧实验室Principal Investigator, 车用动力系主任,佛山仙湖实验室氨氢新能源工业窑炉零碳燃烧技术研发中心副主任。主要从事“碳达峰碳中和”新技术、氨氢融合新能源、燃烧及流动、碳烟及NOx生成机理、激光传感、机器学习等方向研究。主持国家自然科学基金、国家重点研发计划子课题、湖北省“杰出青年”基金、校“青年拔尖”计划、企业合作课题等项目10余项。发表SCI收录期刊论文70余篇,被引3000余次。
教育背景
博士:King Abdullah University of Science and Technology (Mechanical Engineering)
硕士:清华大学 汽车工程系 (动力工程及工程热物理)
本科:武汉理工大学 汽车工程学院 (热能与动力工程)
代表性论文
[1] Y. Wang*, S.H. Chung*. Soot formation in laminar counterflow flames. Progress in Energy and Combustion Science 2019; 74:152-238. link
[2] M. Zhou, L. Xu, F. Yan, S.H. Chung, Y. Wang*. Effects of oxygen partial premixing on soot formation in ethylene counterflow flames with oscillating strain rates. Combustion and Flame 2022, 112442. link
[3] G. Li, M. Zhou, Y. Wang*. Sensitivity of soot formation to strain rate in steady counterflow flames determines its response under unsteady conditions. Combustion and Flame 2022; 241, 112107. link
[4] P. Jiang, M. Zhou, D. Wen, Y. Wang*. An experimental multiparameter investigation on the thermochemical structures of benchmark ethylene and propane counterflow diffusion flames and implications to their numerical modeling. Combustion and Flame 2021;234,111622. link
[5] L. Xu, F. Yan, W. Dai, M. Zhou, S.H. Chung, Y. Wang*. Synergistic effects on soot formation in counterflow diffusion flames of acetylene-based binary mixture fuels. Combustion and Flame 2020; 216, 24-28. link
[6] L. Xu, F. Yan, Y. Wang*. S.H. Chung. Chemical effects of hydrogen addition on soot formation in counterflow diffusion flames: Dependence on fuel type and oxidizer composition. Combustion and Flame 2020; 213, 14-25. link
[7] F. Yan, L. Xu, Y. Wang*, S. Park, S.M. Sarathy, S.H. Chung. On the opposing effects of methanol and ethanol addition on PAH and soot formation in ethylene counterflow diffusion flames. Combustion and Flame 2019; 202:228-42. link
[8] X. Kang, B. Sun, J. Wang, Y. Wang*. A numerical investigation on the thermo-chemical structures of methane-oxygen diffusion flame-streets in a microchannel. Combustion and Flame 2019; 206:266-81. link
[9] Y. Wang*, S. Park, S.M. Sarathy, S.H. Chung. A comparative study on the sooting tendencies of various 1-alkene fuels in counterflow diffusion flames. Combustion and Flame 2018; 192:71-85. link
[10] L. Xu, F. Yan, M. Zhou, Y. Wang*, S.H. Chung. Experimental and soot modeling studies of ethylene counterflow diffusion flames: Non-monotonic influence of the oxidizer composition on soot formation. Combustion and Flame 2018; 197:304-18. link
[11] S. Park, Y. Wang*, S.H. Chung, S.M. Sarathy. Compositional effects on PAH and soot formation in counterflow diffusion flames of gasoline surrogate fuels. Combustion and Flame 2017; 178:46-60. link
[12] Y. Wang*, S.H. Chung. Strain rate effect on sooting characteristics in laminar counterflow diffusion flames. Combustion and Flame 2016; 165:433-44. link
[13] Y. Wang, A. Raj, S.H. Chung*. Soot modeling of counterflow diffusion flames of ethylene-based binary mixture fuels. Combustion and Flame 2015; 162:586-96. link
[14] Y. Wang, S.H. Chung*. Effect of strain rate on sooting limits in counterflow diffusion flames of gaseous hydrocarbon fuels: Sooting temperature index and sooting sensitivity index. Combustion and Flame 2014; 161, 1224-34. link
[15] Y. Wang, A. Raj, S.H. Chung*. A PAH growth mechanism and synergistic effect on PAH formation in counterflow diffusion flames. Combustion and Flame 2013; 160, 1667-1676. link
[16] J. Zhang, F. Yan, Y. Wang*. Sensitivity of soot formation to strain rates in counterflow diffusion flames of various C3-C5 alkanes and alcohols. Fuel 2023; 333, 126321. link
[17] L. Xu, Y. Wang*, D. Liu*. Effects of oxygenated biofuel additives on soot formation: A comprehensive review of laboratory-scale studies. Fuel 2022; 313,122635. link
[18] M. Zhou, F. Yan, L. Ma*, P. Jiang, Y. Wang*, S.H. Chung. Chemical speciation and soot measurements in laminar counterflow diffusion flames of ethylene and ammonia mixtures. Fuel 2022; 308, 122003. link
[19] M. Zhou, F. Yan, X. Zhong, L. Xu, Y. Wang*. Sooting characteristics of partially-premixed flames of ethanol and ethylene mixtures: Unravelling the opposing effects of ethanol addition on soot formation in non-premixed and premixed flames. Fuel 2021; 291, 120089. link
[20] W. Dai, F. Yan, L. Xu*, M. Zhou, Y. Wang*. Effects of carbon monoxide addition on the sooting characteristics of ethylene and propane counterflow diffusion flames. Fuel 2020; 271, 117674. link
[21] W. Wang, L. Xu, J. Yan, Y. Wang*. Temperature dependence of the fuel mixing effect on soot precursor formation in ethylene-based diffusion flames. Fuel 2020; 267, 117121. link
[22] J. Zhang, F. Yan, P. Jiang, M. Zhou, Y. Wang*. Chemical and sooting structures of counterflow diffusion flames of butanol isomers: An experimental and modelling study. Combustion Science and Technology 2022. link
[23] Y. Deng, P. Zou, X. Kang*, Y. Wang*. Experimental investigations on non-premixed methane-air flames in radial microchannels with a controlled temperature profile. Combustion Science and Technology 2021. link
[24] Y. Wang*, S.H. Chung. Formation of soot in counterflow diffusion flames with carbon dioxide dilution. Combustion Science and Technology 2016; 188:805-17. link
[25] L. Xu, F. Yan, M. Zhou, Y. Wang*. An experimental and modeling study on sooting characteristics of laminar counterflow diffusion flames with partial premixing. Energy 2021; 218, 119479. link
[26] B. Sun, X. Kang*, Y. Wang*. Numerical investigations on the methane-oxygen diffusion flame-street phenomena in a microchannel: Effects of wall temperatures, inflow rates and global equivalence ratios on flame behaviors and combustion performances. Energy 2020; 207, 118194. link
[27] L. Xu, M. Zhou, Y. Wang *, D. Liu*. Probing sooting limits in counterflow diffusion flames via multiple optical diagnostic techniques. Experimental Thermal and Fluid Science 2022, 136, 110679. link
[28] F. Yan, M. Zhou, L. Xu, Y. Wang*, S.H. Chung. An experimental study on the spectral dependence of light extinction in sooting ethylene counterflow diffusion flames. Experimental Thermal and Fluid Science 2019; 100:259-70. link
[29] J. Zhang, M. Zhou, F. Yan, C. Yu, Y. Wang*. Effects of inlet flow non-uniformities on thermochemical structures and quasi-one-dimensional simulation of sooting counterflow diffusion flames. Physics of Fluids 2023; accepted
[30] L. Ma, W. Du, D. Wen, Y. Wang*. Infrared multi-spectral soot emission for robust and high-fidelity flame thermometry. Optics Letters 2023; 48, 980-983. link
[31] J. Zhou, M. Zhou, L. Ma, Y. Wang*. Slight asymmetry induces significant distortion in soot volume fraction measurements in counterflow diffusion flames with diffuse back-illumination imaging. Optics Express 2022; 30, 6671-6689. link
[32] D. Wen, Y. Wang*. Spatially and temporally resolved temperature measurements in counterflow flames using a single interband cascade laser. Optics Express 2020; 28, 37879-37902. link
[33] G. Sheng, L. Ma*, D. Wen, Y. Wang*. Simultaneous measurements of temperature, CO2 concentration and soot volume fraction in counterflow diffusion flames using a single mid-infrared laser. Applied Physics B 2022,128,62. link
[34] D. Wen, L. Ma*, Y. Wang*. Effects of thermochemical non-uniformity on line-of-sight laser absorption thermometry in counterflow diffusion flames. Journal of Quantitative Spectroscopy and Radiative Transfer 2022; 277, 107990. link
[35] W. Du, D. Wen, L. Ma, Y. Wang*. Development and validation of a hybrid constraint spectral thermometry for laminar sooting flames. Applied Optics 2022, 61, 8341-8353. link
[36] L. Xu, F. Yan, Y. Wang*. A comparative study of the sooting tendencies of various C5–C8 alkanes, alkenes and cycloalkanes in counterflow diffusion flames. Applications in Energy and Combustion Science 2020; 1–4,100007. link
[37] N.M. Mahmoud, F. Yan, M. Zhou, L. Xu, Y. Wang*. Coupled effects of carbon dioxide and water vapor addition on soot formation in ethylene diffusion flames. Energy & Fuels 2019;33:5582-96. link
[38] L. Xu, F. Yan, Y. Wang*. Effects of Hydrogen Addition on the Standoff Distance of Premixed Burner-Stabilized Flames of Various Hydrocarbon Fuels. Energy & Fuels 2018; 32:2385-96. link
[39] F. Yan, L. Xu, Y. Wang*. Application of hydrogen enriched natural gas in spark ignition IC engines: from fundamental fuel properties to engine performances and emissions. Renewable and Sustainable Energy Reviews 2018; 82:1457-88. link
[40] X. Kang*, Y. Wang*. Transient process of methane-oxygen diffusion flame-street establishment in a microchannel. Frontiers in Energy 2021. link
[41] N.M. Mahmoud, F. Yan, Y. Wang*. Effects of fuel inlet boundary condition on aromatic species formation in coflow diffusion flames. Journal of the Energy Institute 2019; 92:288-97. link